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5 The new science of simplicity1 
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1 The problem 
No matter how often billiard balls have moved when struck in the past, 
the next billiard ball may not move when struck.  For philosophers, this 
�theoretical� possibility of being wrong raises a problem about how to 
justify our theories and models of the world and their predictions.  This is 
the problem of induction.  In practice, nobody denies that the next 
billiard ball will move when struck, so many scientists see no practical 
problem.  But in recent times, scientists have been presented with 
competing methods for comparing hypotheses or models (classical 
hypothesis testing, BIC, AIC, cross validation, and so on) which do not 
yield the same predictions.  Here there is a problem. 

Model selection involves a tradeoff between simplicity and fit for 
reasons that are now fairly well understood (see Forster and Sober, 1994, 
for an elementary exposition).  However, there are many ways of making 
this tradeoff, and this chapter will analyze the conditions under which 
one method will perform better than another.  The main conclusions of 
the analysis are that (1) there is no method that is better than all the 
others under all conditions, even when some reasonable background 
assumptions are made, and (2) for any methods A and B, there are 
circumstances in which A is better than B, and there are other 
circumstance in which B will do better than A.  Every method is fraught 
with some risk even in well behaved situations in which nature is 
�uniform.�  Scientists will do well to understand the risks. 

It is easy to be persuaded by the wrong reasons.  If there is always a 
situation in which method A performs worse than method B, then there is 
a computer simulation that will display this weakness.  But if the analysis 
of this article is correct, then there is always a situation in which any  
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method A will do worse.  To be swayed by a single simulation to put all 
your money on the assumption that the examples of interest to you are 
the same in all relevant respects.  One needs to understand what is 
relevant and what is not. 

Another spurious argument is the (frequently cited) claim that AIC is 
inconsistent�that AIC does not converge in the limit of large samples to 
what it is trying to estimate.  That depends on what AIC is trying to 
estimate.  Akaike (1973) designed AIC to estimate the expected log-
likelihood, or equivalently, Kullback-Leibler discrepancy, or predictive 
accuracy (Forster and Sober, 1994).  In section 7, I show that AIC is 
consistent in estimating this quantity.  Whether it is the most efficient 
method is a separate question.  I suspect that no method has a universally 
valid claim to that title.  The bottom line is that the comparison of 
methods has no easy solution, and one should not be swayed by hasty 
conclusions. 

The way to avoid hasty conclusions is to analyze the problem in three 
steps:  

(1) The specification of a goal. What goal can be reached or achieved?  
(2) The specification of  a means to the goal.  What is the criterion, or 

method?  
(3) An explanation of how a criterion works in achieving the goal.  

This chapter is an exercise in applying this three-step methodology to the 
problem of model selection. 

The chapter is organized as follows.  Section 2 introduces scientific 
inference and its goals, while section 3 argues that standard model selec-
tion procedures lack a clear foundation in even the easiest of examples.  
This motivates the need for a deeper analysis, and section 4 describes a 
framework in which the goal of predictive accuracy is precisely defined. 
The definition of predictive accuracy is completely general and assump-
tion free, in contrast to section 5 which develops the framework using a 
�normality assumption� about the distribution of parameter estimates.2  
Even though the assumption is not universal, it is surprisingly general 
and far reaching.  No statistician will deny that this is a very important 
case, and it serves as concrete illustration of how a science of simplicity 
should be developed.  Section 6 compares the performance of various 
methods for optimizing the goal of predictive accuracy when the normal- 

                                                 
2 �Normality� refers to the bell-shaped normal distribution, which plays a central role in 

statistics.  Physicists, and others, refer to the same distribution as Gaussian, after Carl 
Friedrich Gauss (1777 - 1855), who used it to derive the method of least squares 
from the principle of maximum likelihood. 
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ity assumption holds approximately, and explains the limitations in each 
method. The clear and precise definition of the goal is enough to defend 
AIC against the very common, but spurious, charge that it is inconsistent.  
I discuss this in section 7.  Section 8 summarizes the main conclusions. 

2 Preliminaries 
A model is a set of equations, or functions, with one or more adjustable 
parameters.  For example, suppose LIN is the family of linear functions 
of a dependent variable y on a single independent variable x, {y = a0 + 
a1x + u | a0 ∈ —, a1 ∈ —}, where — is the set of real numbers and u is an 
error term that has a specified probability distribution.  The error 
distribution may be characterized by adjustable parameters of its own, 
such as a variance, although it is always assumed to have zero mean.  
Note that there can be more than one dependent variable, and they can 
each depend on several independent variables, which may depend on 
each other (as in causal modelling).  The family LIN is characterized by 
two adjustable parameters, while PAR is a family of parabolic functions 
{y = a0 + a1x + a2 x2 + u | a0 ∈ —, a1 ∈ —, a2 ∈ —}, characterized by at 
least three adjus-table parameters.   

The distinction between variables and adjustable parameters is some-
times confusing since the adjustable parameters are variables in a sense.  
The difference is that x and y vary within the context of each member of 
the family, while the parameters only vary from one member to the next.   
The empirical data specify pairs of (x, y) values, which do not include 
parameter values.  Parameters are introduced theoretically for the 
purpose of distinguishing competing hypotheses within each model.   

A typical inferential problem is that of deciding, given a set of seen 
data (a set of number pairs, where the first number is a measured x-value, 
and the second number is a measured y-value), whether to use LIN or 
PAR is better for the purpose of predicting new data (a set of unseen (x, 
y) pairs).  Since LIN and PAR are competing models, the problem is a 
problem of model selection.  After the model is selected, then standard 
statistical methods are used to estimate the parameter values to yield a 
single functional relation between x and y, which can be used to predict 
y-values for novel x-values.  The second step is fairly well understood.  
Model selection is the more intriguing part of the process although model 
selection is usually based on the properties of the estimated parameter 
values.  

The philosophical problem is to understand exactly how scientists 
should compare models.  Neither the problem, nor its proposed solutions, 
are limited to curve-fitting problems.  That is why econometricians or  
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physicists, or anyone interested in prediction, should be interested in how 
to trade off fit with simplicity, or its close cousin, unification.  For exam-
ple, we may compare the solutions of  Newton�s equations with the solu-
tions of Einstein�s mechanics applied to the same physical system or set 
of systems.  Here we would be comparing one huge nexus of 
interconnected models with another huge nexus where the 
interconnections amongst the parts follow a different pattern.  Einstein�s 
solution of the problem of explaining the slow precession of the planet 
Mercury�s orbit around the sun depends on the speed of light, which 
connects that precession phe-nomenon to quite disparate electromagnetic 
phenomena.  There is wide consensus that Einsteinian physics would 
come out on top because it fits the data at least as well as the Newtonian 
equations, and sometimes better, without fudging the result by 
introducing new parameters (the speed of light was already in use, 
though not in explaining planetary motions).  It seems that the overall 
number of parameters is relevant here.  These vague intuitions have 
swayed physicists for millennia.  But physicists have not formalized 
them, nor explained them, nor understood them, even in very simple 
cases.  

Recent research in statistics has lead to a number numerically precise 
criteria for model selection. There is classical Neyman-Pearson 
hypothesis testing, the Bayesian BIC criterion (Schwarz 1978), the 
minimization of description length (MDL) criterion (Rissanen 1978, 
1987; Wallace and Freeman 1987), Akaike�s information criterion (AIC) 
(Akaike 1973, 1974, 1977, 1985; see also Sakamoto et al 1986, and 
Forster and Sober 1994) , and various methods of cross validation (e.g., 
Turney 1994, Xiang and Wahba 1996).  In a few short years we have 
gone from informal intuition to an embarrassment of riches.  The 
problem is to find some way of critically evaluating competing methods 
of scientific inference.  I call this the �new science of simplicity� because 
I believe that this problem should be treated as a scientific problem: to 
understand when and why model selection criteria succeed or fail, we 
should model the process of model selection itself.  There is no simple 
and no universal model of model selection, for the success of a selection 
method depends greatly on the circumstances, and to understand the 
complexities, we have to model the situation in which the model 
selection takes place.  For philosophers of science, this is like making 
assumptions about the uniformity of nature in order understand how 
induction works.  The problem is the same:  How can we make 
assumptions that don�t simply assume what we want to prove? For 
example, it would not be enlighten-ing to try to understand why 
inductive methods favor Einstein�s physics over Newton�s if we have to 
assume that Einstein�s theory is true in order to model the inferential 
process. Fortunately, the new work on simplicity  
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makes use of weaker assumptions.  An example of such an assumption is 
the �normality assumption�.  It simply places constraints on how the 
estimated values of parameters are distributed around their true values 
without placing any constraints on the true values themselves.   

This is why it is so important not to confuse what I am calling the 
normality assumption, which is about the distribution of repeated 
parameter estimates, with an assumption about the normality of error 
distributions.  For example, in the case of a binary event like coin 
tossing, in which a random variable3 takes on the values 0 and 1, there is 
no sense in which the deviation of this random variable from the mean is 
normal.  The error distribution is discrete, whereas the normal 
distribution is continuous.  However, the distribution of the sample 
mean, which estimates the propensity of the coin to land heads, is 
approximately normal.  A normality assumption about errors is stronger 
and more restrictive than an assumption of normality for the repeated 
parameter estimates.  It is the less restrictive assumption that is used in 
what follows.4 

It is true that models of model selection are a little different from 
standard scientific models. Scientific models are descriptive, while 
models of model selection are what I will call weakly normative.5  For 
example, models of planetary motion describe or purport to describe 
planets.  But models of model selection relate a model selection criterion 
to a goal.  The goal might be predictive accuracy, empirical adequacy, 
truth, probable truth, or approximate truth.  But whatever the goal, the 
project is to understand the relationship between the methods of 
scientific inference and the goal.  Of this list, predictive accuracy is the 
one epistemic goal (minimizing description length is a non-epistemic 
goal) whose relationship with simplicity is reasonably well understood 
thanks to recent work in mathematical statistics.  So, predictive accuracy 
is the goal considered in this paper. 

Bayesianism is the dominant approach to scientific inference in North 
America today, but what does it take as the goal of inference?  
Fundamentally, Bayesianism is a theory of decision making, and can 
consider any goal.  It then defines the method of deciding between two 
competing models as the maximization of the expected payoff with 

                                                 
3  A random variable is a variable whose possible values are assigned a probability. 
4  Kiessepä (1997) shows that a normality assumption for the error distribution is not 

always sufficient to ensure normality of the parameter estimators.  However, Cramér 
(1946), especially chapters 32 and 33, explains how the conditions are met 
asymptotically for large sample sizes in a very general class of cases. 

5  A strongly normative statement is one which says we should or we ought to do such 
and such.  A weakly normative statement is one that says we should do such and such 
in order to optimize a given goal, without implying that it is a goal we should 
optimize. 
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respect to that goal.  The simplest idea is that the payoff of scientific 
theories lies in their truth.  With that in mind, it is simplest to assign a 
payoff of 1 to a true model and 0 to a false model.  Let me refer to this 
kind of Bayesian philosophy of science as classical Bayesianism, or 
standard Bayesianism.6  Consider a choice between model A and model 
B.  Is the expected payoff in selecting A greater than the expected payoff 
in selecting B?  The answer is given in terms of their probabilities.  If 
Pr(A) is the probability that A is true, and Pr(B) be the probability that B 
is true, then the expected payoff for A is, by definition, Pr(A) times the 
payoff if it�s true plus the Pr(not-A) times the payoff if it�s false.  The 
second term disappears, so the expected payoff for believing A is Pr(A).  
Likewise, the expected payoff for believing B is Pr(B).  The expected 
payoff for believing A is greater than the expected payoff for believing B 
if and only if Pr(A) is greater than Pr(B).  This leads to the principle that 
we should choose the theory that has the greatest probability, which is 
exactly the idea behind the model selection criterion derived by Schwarz 
(1978), called BIC. 

 Whatever the goal, a scientific approach to model selection is 
usefully divided into 3 parts:  

1. The specification of a goal. What goal can be reached or achieved in 
model selection?  Approximate truth is too vague.  Probable truth is 
also too vague unless you tell me what the probability is of.  Truth is 
too vague for the same reason.  Are we aiming for the truth of a 
theory, a model, or a more precise hypothesis? 

2. The specification of a criterion, or a means to the goal.  This is where 
simplicity will enter the picture.  What kind of simplicity is involved 
and exactly how it is to be used in combination with other kinds of 
information, like fit? 

3. An explanation of how the criterion works in achieving the goal.  For 
example, Bayesians explain the criterion by deducing it from specific 
assumptions about prior probability distributions.  The Akaike expla-
nation makes no such assumptions about prior probabilities, but 
instead, makes assumptions about the probabilistic behavior of para-
meter estimates. The style of the explanation is different in each case, 
and is a further ingredient in what I am calling the framework. 

                                                 
6  The classical Bayesian approach is currently dominant in the philosophy of science.  

See Earman (1992) for a survey of this tradition, and Forster (1995) for a critical 
overview.  For alternative �Akaike� solutions to standard problems in the philosophy 
of science, see Forster and Sober (1994).  For an �Akaike� treatment of the ravens 
paradox, see Forster (1994).  For an Akaike solution to the problem of variety of 
evidence, see Kruse (1997). 
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It should be clear from this brief summary that the difference between the 
Bayesian and Akaike modeling of model selection marks a profound 
difference between statistical frameworks.  What I have to say about the 
modeling of model selection goes to the very heart of statistical practice 
and its foundations.  Anyone interested in induction agrees that, in some 
sense, truth is the ultimate goal of inference, but they disagree about how 
to measure partial success in achieving that goal.  Classical Bayesians do 
not tackle the problem of defining partial success.  They talk of the 
probability that a hypothesis is true, but most Bayesians deny that such 
probabilities are objective, in which case they do not define partial 
success in an objective way.  There is no sense in which one Bayesian 
scientist is closer to the truth than another if neither actually reaches the 
true model. 

The same criticism applies to decision-theoretic Bayesians as well.  
These are Bayesians who treat model selection as a decision problem, 
whose aim is to maximize a goal, or utility (Young, 1987), or minimize a 
loss or discrepancy (Linhart and Zucchini, 1986).  They are free to 
specify any goal whatsoever, and so they are free to consider predictive 
accuracy as a goal.  But, again, the expectation is a subjective expectation 
defined in terms of a subjective probability distribution.  Typically, these 
Bayesians do not evaluate the success of their method with respect to the 
degree of predictive accuracy actually achieved.  They could, but then 
they would be evaluating their method within the Akaike framework. 

Nor do Bayesians consider the objective relationship between the 
method (the maximization of subjectively expected utilities) and the goal 
(the utilities).  That is, they do not consider step (3), above.  At present, it 
appears to be an article of faith that there is nothing better than the 
Bayesian method, and they provide no explanation of this fact (if it is a 
fact).  And even if they did, I fear that it would depend on a subjective 
measure of partial success.  That is why the Akaike approach is 
fundamental to the problem of comparing methods of model selection. 

The Akaike framework defines the success of inference by how close 
the selected hypothesis is to the true hypothesis, where the closeness is 
measured by the Kullback-Leibler distance (Kullback and Leibler 1951).  
This distance can also be conceptualized as a measure of the accuracy of 
predictions in a certain domain.  It is an objective measure of partial 
success, and like truth, we do not know its value.  That is why predictive 
accuracy plays the role of a goal of inference, and not a means or method 
of inference.  The issue of how well any method achieves the goal is 
itself a matter of scientific investigation.  We need to develop models of 
model selection. 
 The vagueness of the notion of simplicity has always been a major 
worry for philosophers.  Interestingly, all three methods already men- 
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tioned, the MDL criterion, BIC, and AIC, define simplicity in exactly the 
same way�as the paucity of adjustable parameters, or more exactly, the 
dimension of a family of functions (when the two differ, then it is the 
dimension that is meant, for it does not depend on how the family is 
described; see Forster, 1999).  So, the definition of simplicity is not a 
source of major disagreement. 

In fact, I am surprised that there is any disagreement amongst these 
schools of thought at all!  After all, each criterion was designed to pursue 
an entirely different goal, so each criterion might be the best one for 
achieving its goal.  The MDL criterion may be the best for minimizing 
description length, the BIC criterion the best for maximizing probability, 
and the AIC criterion the best at maximizing predictive accuracy.  The 
point is that the claims are logically independent.  The truth of one does 
not entail the falsity of the others.  There is no reason why scientists 
should not value all three goals and pursue each one of them separately, 
for none of the goals are wrong-headed. 

Nevertheless, researchers do tend to think that the approaches are 
competing solutions to the same problem.  Perhaps it is because they 
think that it is impossible to achieve one goal without achieving the 
others?  Hence, there is only one problem of induction and they talk of 
the problem of scientific inference.  If there is only one problem, then the 
Akaike formulation is a precise formulation of the problem, for it 
provides a definition of partial success with respect to the ultimate goal 
of truth.  For that reason, I will compare all model selection criteria 
within the Akaike framework. 

3 A milieu of methods and an easy example 
Here is a very simple example of a statistics problem.  Suppose that a die 
has a probability *θ of an odd number of dots landing up, which does not 
change over time, and each toss is independent of every other toss.  This 
fact is not known.  The two competing models are M1 and M2.  Both 
models get everything right except that they disagree on the probability 
of an odd number of dots landing up, denoted by θ.   

M1 asserts that θ = ½.  This model specifies an exact probability for 
all events.  If M1 is a family of hypotheses, then there is only one 
hypothesis in the family.  M1 has no adjustable parameters.  This is a 
common source of confusion, since it does mention a parameter; 
namelyθ .  But θ  is given a value, and is therefore adjusted, and not 
adjustable.  M2, on the other hand, is uncommitted about the value of θ . 
θ  is now an adjustable parameter, so M2 is more complex than M1 in one 
sense of �complex�.  Also note that M1 is nested in M2, since all the 
hypotheses in M1 also appear in  
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M2.  The problem is to use the observed data to estimate the probability 
of future events.  There is no precise prediction involved, but we think of 
it as a prediction problem of a more general kind.  The problem of 
induction applies to this kind of problem. 

In classical statistics, there are two steps in the �solution� of this prob-
lem.  The first step is to test M1 against M2.  This is the process that I am 
calling model selection.  The second step is to estimate the value of any 
adjustable parameters in the winning model by choosing the best fitting 
hypothesis in the family that best fits the seen data.  This picks out a 
single hypothesis which can be used for the prediction or explanation of 
unseen data.  While different statistical paradigms have different 
definitions of �best fit�, those differences usually make little difference, 
and I will ignore them here.  I will assume that everyone measures fit by 
the likelihood (or log-likelihood).  The naïve empirical method that 
ignores simplicity and goes by fit alone is called the method of maximum 
likelihood (ML).  In the case of M1 the maximum likelihood hypothesis 
has to be θ = ½, since there are no others that can do better.  In the case 
of M2 there is a well known result that tells us that the maximum 
likelihood hypothesis is �θ θ= , where �θ  is the relative frequency of 
heads-up in the observed data.  Note that the second step is essential, 
since M2 by itself does not specify the value of its adjustable parameter, 
and cannot be used to make probabilistic assertions about future data. 

Here is how classical Neyman-Pearson hypothesis testing works.  The 
simpler of two models is the null hypothesis, in this case M1 (see figure 
5.1).  The decision to accept the null hypothesis or reject the null 
hypothesis (and therefore accept M2) depends on how probable the data 
would be if the null hypothesis were true.  If the data are improbable 
given the null hypothesis, then reject the null hypothesis, otherwise 
accept it.  The degree of improbability is determined by the size or the 
level of significance of the test.  A size of 5% is fairly standard (p < .05), 
which means that the null hypothesis is rejected if the observed data is a 
member of a class of possible data sets that collectively has a probability 
of 5% given the null hypothesis.  The observed relative frequencies that 
would be lead to such a rejection are those that fall under the shaded area 
in figure 5.1. The value of the relative frequency shown in Figure 1 lies 
in that region, so that the null hypothesis is accepted in that case.   

Notice that the hypothesis �θ θ=  in M2 fits the observed facts better 
than the null hypothesis, yet the null hypothesis is still accepted.  
Therefore classical model selection trades off fit for simplicity, provided 
that the simpler hypothesis is chosen as the null hypothesis. 

There are a number of peculiar features of the classical method of 
model selection.  First, there is nothing to prevent the more complex 
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Figure 5.1: Classical Neyman-Pearson hypothesis testing. 

model being chosen as the null hypothesis, and there is no reason against 
this practice except to say that it is not common practice.  Nor is there 
any reason for choosing a 5% level of significance other than common 
practice.  Finally, it is odd that the same tradeoff would be made even if 
M2 had many more adjustable parameters than M1.  There is no obvious 
method for adjusting the size of the test to take account of these features 
of the context.  Neyman-Pearson methods do not appear to have the kind 
of rationale demanded by the three steps described in the introduction. 

I have heard only one reply to this charge.  The reply is that classical 
statistics aims to minimize the probability of rejecting the null hypothesis 
when it is true (i.e. minimize type I error), and minimize the probability 
of accepting the null hypothesis when it is false (i.e. minimize type II 
error), and it does this successfully.  I doubt that this is the only aim of 
the procedure because I think that working scientists are also interested 
in predictive accuracy, and it is not obvious that classical testing brings 
us closer to that goal.   And, in any case, the two parts to the goal stated 
above are incompatible.  To minimize type I error, we should choose the 
size of the test to be 0%.  But that will maximize the type II error.  At the 
other extreme, one could minimize Type II errors by choosing a 100% 
significance level, but that would maximize the Type I error.  The actual 
practice is a tradeoff between these two extremes.  Classical statisticians 
need to specify a third goal if the tradeoff is to be principled. 

Another objection to the Neyman-Pearson rationale for hypothesis 
testing is that it fails to address the problem when both models are false.  
For then I would have thought that any choice is in error, so trading off 
Type I and Type II errors, which are conditional on one or other of the 
models being true, is an irrelevant consideration.  In other words, there is 
no criterion of partial success.  Note that these are criticisms of the 
rationale behind the method, and not the methods themselves. 
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In order to explain the AIC and BIC model selection methods in this 
example, it is sufficient to think of them as classical Neyman-Pearson 
tests, with some special peculiarities.  In particular, AIC chooses a 
greater rejection area (about 15.7%), while BIC recommends a smaller 
rejection area, which further diminishes as the number of data increases.  
This is the situation when the competing models differ by one adjustable 
parameter, as is the case in our example.  Figure 5.2 plots the critical 
point (the point defining the boundary of the rejection area) as a function 
of the number of coin tosses.  Notice that as the number of tosses 
increases, a smaller deviation of the proportion of heads up from the null 
result of 50% will succeed in rejecting the null hypothesis, although BIC 
requires are greater deviation in all cases.  Therefore BIC gives greater 
weight to simplicity in the sense that it requires that there be stronger 
evidence against the hypothesis before the simpler null hypothesis is 
rejected. 

When the models differ by a dimensions greater than one (such as 
would be the case if we were to compare LIN with a family of 10-degree 
polynomials), the size of the rejection areas decrease.  This is 
significantly different from classical Neyman-Pearson testing, which 
makes no adjustment. 

Number of data (in thousands)

Departure of the observed 
relative frequency of heads 

above/below 50%

20 40 60 80 100
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20
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Figure 5.2: The critical point at which the null hypothesis is rejected 
in cross-validation, BIC, and AIC.  Classical hypothesis testing 
would be between BIC and AIC. 
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Bayesians have responded to the conceptual difficulties facing 
classical statisticians by bringing in the prior probabilities of the 
competing hypotheses and their likelihoods.  The posterior probability of 
a model is proportional to the product of the prior probability and the 
likelihood of the model.  Therefore, the Bayesian method of comparing 
posterior probabilities appears to address the problem.  Certainly, this 
approach does make a decision that depends on both of the competing 
models, but is it the best policy for comparing the predictive accuracy of 
competing models? 

Perhaps Bayesians could argue like this:  Truth is connected to 
predictive accuracy in the sense that there is no hypothesis that can be 
more predictively accurate than a true hypothesis, so to maximize the 
expected predictive accuracy of a model, we should maximize its 
probability.   However, this argument is flawed.  First, the premise is 
false.  It is true that for a maximally specific hypothesis�one that gives 
precise values to all parameters�no hypothesis can be more accurate 
than the true hypothesis.  However, this statement does not extend to 
models, which assert only that one of its hypotheses is true�models are 
very large disjunctions.  Therefore, the predictive accuracy of a model is 
either undefined, or it depends either on the probabilistic weights given 
to its members, or it is identified with the predictive accuracy of the 
maximum likelihood hypothesis (if �point� estimation is used).  In either 
case, if the predictive accuracy is well defined, then the predictive 
accuracy of a true model will be less than the predictive accuracy of the 
true hypothesis.  It also follows that the predictive accuracy of a false 
model can be higher than the predictive accuracy of a true model. 

Second, even if the premise were true, the conclusion does not follow.  
Maximizing the probability of truth does not always maximize the 
expected predictive accuracy.  To show this, suppose I predict the 
reading (plus or minus a second) on an atomic clock using my watch, 
which is 3 seconds fast.  My predictive accuracy (suitably defined) is 
pretty good, but the probability that my prediction is true is zero.  
Contrast that to someone who makes the same prediction on the basis of 
a stopped clock. The probability of their prediction being true is higher 
than mine, yet their predictive accuracy is lousy. 
 Another incongruity of this Bayesian approach arises in the case of 
nested models, like the ones we are considering.  As an independent 
example, consider a curve fitting example in which the model of all 
linear functions, LIN, is nested in the model of all parabolic functions, 
PAR, since all the members of LIN are contained in PAR.  This can be 
seen by examining the equations:  If the coefficient of the squared term 
in the equation for PAR is zero, then the equation reduces to the equation  
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for a straight line.  Logically speaking, this nested relationship means 
that LIN logically entails PAR, in the sense that it is impossible for LIN 
to be true and PAR false.  It is now a consequence of the axioms of 
probability that the LIN can never be more probable than PAR, and this 
is true for all probabilities, prior or posterior (Popper 1959, chapter 7).  
So, the Bayesian idea that we should select the model with the highest 
posterior probability leads to the conclusion that we should never choose 
LIN over PAR.  In fact, we should never choose PAR over CUBE, where 
CUBE is the family of third degree polynomials, and so on.  But if we 
are interested in predictive accuracy, there will be occasions on which we 
should choose LIN over PAR.  Therefore, the Bayesian principle cannot 
serve the goal of predictive accuracy in this case. 

Of course, Bayesians can simply refuse to consider this case.  They 
might consider LIN versus PAR−, where PAR− is PAR minus LIN.  Then 
the models are not nested, and the Bayesian criterion could lead to the 
choice of LIN over PAR−.  But it is puzzling why this difference should 
make a difference if we are interested in predictive accuracy, since the 
presence or absence of LIN nested in PAR makes no difference to any 
prediction, and ipso facto, no difference to the accuracy of any 
predictions.  The failure of Bayesian principles to yield the same answer 
in both cases is a clear demonstration that their methods are not designed 
to maximize predictive accuracy.  If they succeed in achieving this goal, 
then it is a lucky accident. 

The goals of probable truth and predictive accuracy are clearly 
different, and it seems that predictive accuracy is the one that scientists 
care about most.  Whenever parameter values are replaced by point 
estimates, there is zero chance of that specific value being the true one, 
yet scientists are not perturbed by this.  Economists don�t care whether 
their predictions of tomorrow�s stock prices are exactly right; being close 
would still produce huge profits.  Physicists don�t care whether their 
current estimate of the speed of light is exactly true, so long as it has a 
high degree of accuracy.  Biologists are not concerned if they fail to 
predict the exact corn yield of a new strain, so long as they are 
approximately right.  If the probability of truth were something they 
cared about, then point estimation would be a puzzling practice.  But if 
predictive accuracy is what scientists value, then their methodology 
makes sense. 
 This does not work as a criticism of all Bayesians.  Decision-
theoretic Bayesians could take predictive accuracy as their utility, and 
derive a criterion to maximize the expected predictive accuracy.  This 
decision-theoretic approach is discussed in Young (1987), for example.  
However, the classical Bayesian approach is the most influential amongst  
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scientists, perhaps because it has led to the useable BIC criterion which 
appears to implement Occam�s razor.7 
 A decision-theoretic Bayesianism that takes predictive accuracy as 
its utility still requires the use of prior probability distributions over 
propositions about the predictive accuracies of hypotheses.  If we had 
such prior knowledge, then the Bayesian approach would make sense.  
But we don�t.  Another way of stating the criticism is that there are 
infinitely many Bayesian theories, and there is no way of deciding 
amongst them, besides using computer simulations, testing their success 
on real predictions, and mathematically analyzing the various criteria 
under a variety of assumptions.  But this is just to revert to the Akaike 
approach, and one might wonder whether Bayesianism is anything more 
than the background machinery for generating criteria. 
 A counter-consideration is that Bayesian decision theory allows us 
to incorporate background information in decision-making.  Certainly, 
when such information is available, it should be used.  But Bayesians do 
not have a monopoly on background knowledge.  It is not even true that 
the AIC criterion takes no account of background information, since it 
can be applied more globally when there is data relevant to the 
hypothesis that falls outside of the prediction problem at hand.  For 
example, a model of stock market movement may take global economic 
parameters into account, and this may be done by considering a broader 
base of economic data.  AIC requires that the relevance be built explicitly 
into the model, whereas Bayesians allow it to be represented in the prior 
probabilities.  I believe that the background information is better built 
into the model, where it is publicly displayed and subjected to debate. 
 Cross-validation is a method widely used in learning algorithms in 
neural networks and in machine learning (e.g., Turney 1994).  It is an 
interesting method because it appears to make no assumptions at all.  The 
idea is that a curve is fitted to a subset of the observed data�often the 
whole data minus one data point. Such a subset of data is called a 
calibrating data set.  The predictive accuracy of the fitted model is tested 
against the data point or points left out, which may be averaged over all 
possible calibrating data sets.  Note that this method cannot be applied to 
a single specific curve, since the average fit for each data point in the set 
is  

                                                 
7  The earliest reference to this idea I know is Rosenkrantz (1977), except he does not 

derive the BIC approximation, which was derived by Schwarz (1978).  MacKay 
(1995) discusses the same version of Occam�s razor in apparent ignorance of 
previous work.  Cheeseman (1990) also discusses the classical Bayesian approach 
with even less sophistication and even fewer references.  
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just the fit with respect to the total data set, which reduces to the naïve 
empiricism of ML.   

However, if the method is used to compare models rather than 
particular hypotheses, then it has different properties.  Each calibrating 
data set produces a slightly different best fitting curve in the family and 
there will be a penalty for large, complex, families of curves because 
large families will tend to produce greater variation in the curve that best 
fits a calibrating data set (Turney 1990).  This leads to an average fit that 
is poorer than the fit of the curve that best fits the total data set.  There is 
no need to explicitly define simplicity or to quantify its effects on the 
stability of estimation; it is taken into account implicitly rather than 
explicitly.  It is a remarkable fact that this simple method leads to 
approximately the same criterion of model selection as AIC in our simple 
coin tossing example (see figure 5.2).  It is remarkable exactly because 
AIC factors in simplicity explicitly while cross validation does not.  But 
perhaps it is not so surprising once we note that they are both designed 
with the same goal in mind � predictive accuracy.8  Methods of cross 
validation are worthy of serious attention from scientists, either as a way 
of complementing other criteria or as an alternative criterion.  I don�t 
know which, but I believe that the Akaike framework provides the right 
tools for such an investigation. 
 This section has surveyed the variety of inference methods that can 
be applied to the easiest example imaginable.  Very often the methods 
give similar results, but the foundations of those methods vary greatly.  
Nevertheless, they should all be considered seriously.  The solution is to 
evaluate all of them within the Akaike framework (or some natural 
extension of it).  As you can see, this has been an argument for the 
Akaike framework, and not the Akaike criterion (AIC). 

4 Predictive accuracy as a goal of model selection 
How should we define predictive accuracy?  First, we need to distinguish 
between seen and unseen data.  As a goal, we are interested in the 
prediction of unseen data, rather than the data used to construct the 
hypothesis.  The seen data is the means by which we can forecast how 
well the hypothesis will predict unseen data. 

However, any particular set of data may exhibit idiosyncrasies due to 
random fluctuations of observational error.  If we took the goal to be the  

                                                 
8  I have since learned that Stone (1977) proved that AIC is equivalent to leave-one-out 

cross-validation asymptotically for large samples, so the result I got is to be expected 
because I assumed the same conditions. 
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prediction of a single set of unseen data, then the goal is too hard in the 
sense that particular errors are impossible to predict, and in other cases 
the goal may be achieved by dumb luck.  It is therefore customary to 
define predictive accuracy differently.  The idea is that a predictively 
accurate curve is one that is as close as possible to the trend, or 
regularity, behind the data.  The technical trick used to unpack that idea 
is to imagine many data sets generated repeatedly by that regularity (the 
true curve) and define the predictive accuracy of an arbitrary hypothesis 
as the average fit of the curve with respect to all such data sets.  In that 
way no particular set of errors fluctuations are given undue emphasis.  In 
the language of probability, predictive accuracy is the expected fit of data 
sets generated by the true probability distribution.  The expected value is 
therefore objectively defined.  It is not the subjective expectation that 
would appear in a Bayesian analysis of the problem.  This point is worth 
examining in greater detail.  

Consider a curve fitting example in which y is function of x.  Define 
the domain of prediction in terms of a probability distribution defined 
over the independent variable, ( )p x .  This distribution will define the 
range of x-values over which unseen data sets are sampled.   There is no 
claim that ( )p x is objective in the sense of representing an objective 
chance, or a propensity of some kind.  But it is objectively given once the 
domain of prediction is fixed.  There are now three cases to consider:  

1. There is a true conditional probability density ( )*p y x , which is an 
objective propensity.  Since p(x) is objective (given the domain of 
prediction), the joint distribution p(x, y) is objective, because it is the 
product of the two. 

2. The probability density ( )p y x  is an average over the propensities 
( )* ,p y x z , where z refers to one or more variables that affect the 

value of y.  In this case, one needs to specify the domain of prediction 
more finely.  One needs to specify the probability distribution p(x, z).  
Once p(x, z) is fixed, p(x, y)is determined by ( )* ,p y x z , and is again 
objective. 

3. The independent variable x determines a unique, error free, value of 
y.  This is the case of noise-free data.  The true curve is defined by 
the value of y determined by each value of x.  What this means is that 
all points generated by the p(x, y) will lie exactly on the true curve.  
The distribution ( )p y x  is a Dirac delta function (zero for all values 
of y except for one value, such that it integrates to 1).  The 
probability p(x, y) is still objectively determined from p(x), which 
defines the domain of prediction.  Moreover, p(x, y) allows for a 
statistical treatment of parameter estimation, so it fits into the Akaike 
framework.   
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Case (3) is important for it shows how a probabilistic treatment of 
parameter estimation may be grounded in a probabilistic definition of the 
domain of prediction.  There is no need to assume that nature is 
probabilistic.  The only exception to this is when a family of curves 
actually contains the true curve, for in that case, there can be no curve 
that fits the data better than the true curve, and the estimated parameter 
values are always the true ones, and there will be no variation from one 
data set to the next.  In this case, the framework will not apply.  I believe 
that this is not a severe limitation of the framework since it is plausible to 
suppose that it arises very rarely.  Therefore, in general, once the domain 
is fixed, the probability of sets of data generated by the true distribution 
in this domain is objectively determined by the true distribution. 

The relativization of predictive accuracy to a domain has meaningful 
consequences.  In many cases, a scientist is interested in predictions in a 
domain different from the one in which the data are sampled.  For 
example, in time series, the observed data is sampled from the past, but 
the predictions pertain to the future.  In the Akaike framework, the 
default assumption is that the domain of prediction is the same as the 
domain in which the data are sampled.   It is imagined, in other words, 
that new data are re-sampled from the past.  If the time series is 
stationary, then the past is effectively the same as the future.  But in 
general this is not true, in which case it is an open question whether the 
standard model selection criteria apply (for discussion, see Forster, 
2000).  It is an advantage of the Akaike framework that such issues are 
raised explicitly. 

Predictive accuracy is the expected fit of unseen data in a domain, but 
this definition is not precise until the notion of fit is precise.  A common 
choice is the sum of squared deviations made famous by the method of 
least squares.  However, squared deviations do not make sense in every 
example.  For instance, when probabilistic hypotheses are devised to 
explain the relative frequency of heads in a hundred tosses by the fairness 
of the coin, the hypothesis does not fit the data in the sense of squared 
deviations.  In these cases, an appropriate measure of fit is the likelihood 
of the hypothesis relative to the data (the probability of the data given the 
hypothesis).     

However, does the likelihood measure apply to all cases?  In order for 
the hypothesis to have a likelihood, we need the hypothesis to be 
probabilistic.  In curve fitting, we do that by associating each hypothesis 
with an error distribution.  In that way, the fit of a hypothesis with any 
data set is determined by the hypothesis itself, and is therefore an entirely 
objective feature of the hypothesis.  When the error distribution is normal 
(Gaussian), then the log-likelihood is proportional to the sum a squared  
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deviations.  When the error distribution is not normal, then I take the log-
likelihood to be the more fundamental measure of fit. 

Before we can state the goal of curve fitting, or model selection in 
general, we need a clear definition of the predictive accuracy of an 
arbitrary hypothesis.  We are interested in the performance of a 
hypothesis in predicting data randomly generated by the true hypothesis.  
We have already explained that this can be measured by the expected 
log-likelihood of newly generated data.  But we do not want this goal to 
depend on the number of data n because we do not really care whether 
the unseen data set is of size n or not.  It is convenient to think of the 
unseen data sets as the same size as the seen data set, but it is surely not 
necessary.  Unfortunately, the log-likelihood relative to n data increases 
as n increases.  So, in order that the goal not depend on n we need to 
define the predictive accuracy of a hypothesis h as the expected per 
datum log-likelihood of h relative to data sets of size n.  Under this 
definition, the predictive accuracy of a fixed hypothesis will be the same 
no matter what the value of n, at least in the special case in which the 
data are probabilistically independent and identically distributed.9 

Formally, we define the predictive accuracy of an arbitrary hypothesis 
h as follows.  Let E* be the expected value with respect to the objective 
probability distribution p*(x, y), and let Data(n) be an arbitrary data set 
of n data randomly generated by p*(x, y).   Then the predictive accuracy 
of h, denoted by A(h), is defined as 

  ( ) ( )( )*1 log likelihoodA h E Data n
n

 =   , 

where E* denotes the expected value relative to the distribution p*(x, y).  
The goal of curve fitting, and model selection in general, is now well 
defined once we say what the h�s are. 

Models are families of hypotheses.  Note that, while each member of 
the family has an objective likelihood, the model itself does not.  
Technically speaking, the likelihood of a model is an average likelihood 
of its members, but the average can only be defined relative to a 
subjective distribution over its members.  So, the predictive accuracy of a 
model is undefined (except when there is only one member in the 
model). 10 

Model selection proceeds in two steps.  The first step is to select a 
model, and the second step is to select a particular hypothesis from the  

                                                 
9  For in that case, the expected log-likelihood is n times the expected log-likelihood of 

each datum. 
10 There are ways of defining model accuracy (Forster and Sober, 1994), but I will not 

do so here because it complicates the issue unnecessarily. 
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model.  The second step is well known in statistics as the estimation of 
parameters.  It can only use the seen data, and I will assume that it is the 
method of maximum likelihood estimation.  Maximizing likelihood is 
the same as maximizing the log-likelihood, which selects the hypothesis 
that best fits the seen data.  If an arbitrary member of the model is 
identified by a vector of parameter values, denoted by θ , then �θ denotes 
the member of the model that provides the best fit with the data.   Each 
model produces a different best fitting hypothesis, so the goal of model 
selection is to maximize the predictive accuracy of the best fitting cases 
drawn from rival models.  This is the first complete statement of the goal 
of model selection. 

In science, competing models are often constrained by a single 
background theory.  For example, Newton first investigated a model of 
the earth as a uniformly spherical ball, but found that none of the 
trajectories of the earth�s motion derived from this assumption fit the 
known facts about the precession of the earth�s equinoxes.  He then 
complicated the model by allowing for the fact that the earth�s globe 
bulges at the equator and found that the more complicated model was 
able to fit the equinox data.  The two models are Newtonian models of 
the motion.  However, there is no reason why Newtonian and Einsteinian 
models cannot compete with each other in the same way (Forster, 
2000a).   In fact, we may suppose that there are no background theories.  
All that is required is that the models share the common goal of 
predicting the same data.  

In the model selection literature, the kind of selection problem 
commonly considered is where the competing models form a nested 
hierarchy, like the hierarchy of k-degree polynomials.  Each model in the 
hierarchy has a unique dimension k, and the sequence of best fitting 
members is denoted by �

kθ . The predictive accuracy of �
kθ is denoted by 

�( )kA θ .  This value does not depend on the number of data, n.  In fact, the 
predictive accuracy is not a property of the seen data at all�except in the 
sense that �

kθ  is a function of the seen data.  The aim of model selection 
in this context is to choose the value of k for which �( )kA θ has the highest 
value in the hierarchy.  

Note that �
kθ will not be the predictively most accurate hypothesis in 

the model k. �
kθ  fits the seen data the best, but it will not, in general, 

provide the best average fit of unseen data.  The random fluctuations in 
any data set will lead us away from the predictively most accurate 
hypothesis in the family, which is denoted by *

kθ .  However, from an 
epistemological point of view, we don�t know the hypothesis *

kθ , so we 
have no choice but to select �

kθ in the second step of curve fitting.  So, our 
goal is to maximize �( )kA θ , and not *( )kA θ . In fact, the maximization of 

*( )kA θ   would lead to the absurd result that we should select the most 
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complex model in the hierarchy, since *( )kA θ can never decrease as k 
increases. 

While I am on the subject of �what the goal is not�, let me note that 
getting the value of k �right� is not the goal either.  It is true that in 
selecting a model in the hierarchy we also select of value of k.  And in 
the special case in which *( )kA θ  stops increasing at some point in the 
hierarchy, then that point in the hierarchy can be characterized in terms 
of a value of k, which we may denote as k*.  In other words, k* is the 
smallest dimensional family in the hierarchy that contains the most 
predictively accurate hypothesis to occur anywhere in the hierarchy (if 
the true hypothesis is in the hierarchy, then k* denotes the smallest true 
model).   But model selection aims at selecting the best hypothesis �

kθ , 
and this may not necessarily occur when k = k*.  After all, �

kθ could be 
closer to the optimal hypothesis when k is greater than k* since the 
optimal hypothesis is also contained in those higher dimensional models.  
I will return to this point in section 7, where I defend AIC against the 
common charge that it is not statistically consistent.   

5 A �normality� assumption and the geometry of parameter space 
There is a very elegant geometrical interpretation of predictive accuracy 
in the special case in which parameter estimates conform to a 
probabilistic description that I shall refer to as the normality condition.  It 
is good to separate the condition from the question about what justifies 
the assumption.  I will concentrate on its consequences and refer the 
inter-ested reader to Cramér (1946, chs. 32-4) for the theory behind the 
con-dition.  

Consider the problem of predicting y from x in a specified domain of 
prediction.  As discussed in the previous section, there is a �true� 
distribution ( , )p x y , which determines how the estimated parameter 
values in our models vary from one possible data set to the next.  We can 
imagine that a large dimensional model K contains the true distribution, 
even though the model K is too high in the hierarchy to be considered in 
practice.  In fact, we could define the hierarchy in such a way that it 
contains the true distribution, even though every model considered in 
practice will be false.  So, let the point *θ  in the model K represent the 
true distribution.  The maximum likelihood hypothesis in K is �

Kθ , which 
we may denote more simply by �θ .  There are now two separate functions 
over parameter space to consider.  The first is the probability density for 
�θ  over the parameter space, which we could denote by ( )f θ .  The 

second is the likelihood function, ( )L Data θ , which records the 
probability of the data given any particular point in parameter space.  
Both are defined over points in parameter space, but each has a very 
different meaning.  The normality  
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assumption describes the nature of each function, and then connects them 
together.  
1. The distribution ( )f θ  is a multivariate normal distribution centered 

at the point *θ  with a bell-shaped distribution around that point 
whose spread is determined by the covariance matrix Σ*.  The 
covariance matrix Σ* is proportional to 1/n, where n is the sample 
size (that is, the distribution is more peaked as n increases). 

2. The likelihood function ( )L Data θ  is proportional to a multivariate 
normal distribution with mean �θ and covariance matrix Σ.11  As n 
increases, log ( )L Data θ  increases proportionally to n, so that Σ is 
proportional to 1⁄n. 

3. Σ is equal to Σ*.  

The exact truth of condition (3) is an unnecessarily strong condition, but 
its implications are simple and clear.  Combined with (1) and (2), it 
implies that log-likelihoods and predictive accuracies vary according to 
the same metric; namely squared distances in parameter space.  More 
precisely, there is a transformation of parameter space in which Σ is 
equal to I/n, where I is the identity matrix and n is the sample size.  The 
per-datum log-likelihood of an arbitrary point θ  is equal to the per-
datum log-likelihood of �θ  minus ½ n 2�| |θ θ− , where 2�| |θ θ− is the 
square of the Euclidean distance between θ  and �θ  in the transformed 
parameter space.  Moreover, the predictive accuracy of the same point θ  
is equal to the predictive accuracy of *θ  minus ½ 2*θ θ− .  Since �θ  is 
a multivariate normal random variable distributed around *θ  with 
covariance matrix I⁄n, ( )� *n θ θ−  is a multivariate normal random 
variable with mean zero and covariance matrix I.  It follows that 
n 2�| * |θ θ− is a chi-squared random variable with K degrees of freedom, 
and that 2�| * |θ θ−  is a random variable with mean K ⁄n. 

Similar conclusions apply to lower  models in the hierarchy of 
models, assuming that they are represented as subspaces of the K-
dimensional parameter space.  Without loss of generality, we may 
suppose that the parameterization is chosen so that an arbitrary member 
of the model of dimension k is ( )1 2, , , ,0, ,0kθ θ θ… … , where the last K − k 
parameter values are 0.  The predictively most accurate member of model 
k, denoted *

kθ , is the projection of *θ  onto the subspace and �
kθ  is the 

projection of �θ  onto the same subspace.   

                                                 
11 The likelihood function is not a probability function because it does not integrate to 1. 
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We may now use the normality assumption to understand the 
relationship between �( )kA θ  and *( )kA θ .  First note that *

kθ  is fixed, 
so *( )kA θ is a constant.  On the other hand, �

kθ varies randomly around *
kθ  

according to a k-variate normal distribution centered at *
kθ .  We know 

that *( )kA θ  is greater than �( )kA θ , since *( )kA θ  is the maximum by 
definition.  Moreover, �( )kA θ  is less than *( )kA θ  by an amount propor-
tional to the squared distance between �

kθ  and *
kθ  in the k-dimensional 

subspace.  Therefore, 

 ( ) ( )
2

*�
2

k
k kA A

n
χθ θ= − , 

where 2
kχ  is a chi-squared random variable of k degrees of freedom.  It is 

a well known property of the chi-squared distribution that 2
kχ  has a mean, 

or expected value, equal to k.  That leads to the relationship between the 
bottom two plots in figure 5.3.  Note that while *( )kA θ can never decrease 
(because the best in k +1 is at least as good as the best in k), it is also 
bounded above (since it can never exceed the predictive accuracy of the 
true hypothesis).  This implies that the lower plot of �( )kA θ as a function 
of k will eventually reach a maximum value and then decrease as k 
increases.  Hence model selection aims at a model of finite dimension, 
even though the predictive accuracy *( )kA θ of the best hypothesis in the 
model will always increase as we move up the hierarchy (or, at least, it 
can never decrease). The distinction between �

kθ around *
kθ is crucial to our 

under-standing of model selection methodology. 
As an example, suppose that a Fourier series is used to approximate a 

function.  Adding new terms in the series can improve the potential accu- 
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Figure 5.3  The behavior of various quantities in a nested 
hierarchy of models. 
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racy of fit indefinitely; however, the problem with overfitting is over-
whelming when there are too many parameters to estimate.  An historical 
illustration of this phenomenon is the case of ancient Ptolemaic 
astronomy, where adding epicycles can always improve the 
approximation to the planetary trajectories, yet adding epicycles beyond a 
certain point does not improve prediction in practice.  The present 
framework explains this fact. 

Denote the k for which �( )kA θ is maximum as 0k .  The value of 0k  
depends on the estimated parameter values (on the �

kθ ), which depends 
on the actual data at hand.  There will be a tendency for 0k to increase as 
the number of seen data increases.  This is observed in figure 5.3.  The 
middle curve (the curve for *( )kA θ ) is entirely independent of the seen 
data, but the mean curve for �( )kA θ hangs below it by a distance k/n.  As n 
increases, it will hang closer to the middle curve, and so its maximum 
point will move to the right.  Therefore a richer data set justifies an 
increase in complexity�something that is intuitively plausible on the 
idea that more data allow for the more accurate estimation of complex 
regularities.  For example, a parabolic trend in a small set of data is more 
readily explained away as an accidental deviation from a linear 
regularity, while the same parabolic trend in a large number of data is not 
so easily dismissed. 

The relationship between �( )kA θ  and *( )kA θ  exhibits what is 
commonly called the bias/variance tradeoff (Geman et al, 1992).  Let me 
first explain what is meant by the terms �bias� and �variance�.  Model 
bias is the amount that the best case in the model is less predictively 
accurate than the true hypothesis.  By �best case�, I mean the hypothesis 
in the model with the highest predictive accuracy, not the best fitting 
case.  In other words, model bias is the difference between *( )kA θ and the 
predictive accuracy of the true hypothesis.  As *( )kA θ  increases (see 
figure 5.3), it gets closer to the best possible value, so the model bias 
decreases.  Of course, we do not know which hypothesis is the most 
predictively accurate.  So, model bias is not something that models wear 
on their sleeves.  Nevertheless, we can make some reasonable guesses 
about model bias.  For example, the model that says that planets orbit the 
sun on square paths is a very biased model because the best possible 
square orbit is not going fit the true orbit very well.  At the other 
extreme, any model that contains the true hypothesis has zero bias.  In 
nested models, the bias is less for more complex hypotheses. 

The variance, on the other hand, refers to the squared distance of the 
best fitting hypothesis �

kθ  from the most predictively accurate hypothesis 
*
kθ .  It is governed by the chi-squared variable in the previous equation.  

The variance of estimated hypothesis from the best case favors 
simplicity. 
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In conclusion, complexity is good for reduction of bias, whereas sim-
plicity reduces the tendency to overfit.  The optimum model is the one 
that makes the best tradeoff between these two factors. The bias/variance 
dilemma refers to the fact that as we go up in a hierarchy of nested 
models, the bias decreases, but the expected variance increases.  A model 
selection criterion aims at the best trade off between bias and variance, 
but neither bias nor variance is known, so this theoretical insight does not 
lead directly to any criteria.  It tells us what we aim to do, not how to do 
it. 

An interesting special case is where a family 1k  at some point in the 
hierarchy already contains the true hypothesis.  In that case, there is no 
decrease in bias past that point.  But going higher in the hierarchy leads 
to some loss, because the additional parameters will produce a tendency 
to overfit.  This means that going from model 1k to 1 1k +  has no expected 
advantages in terms of predictive accuracy.  So, it would be best to stop 
in this case.  However, this fact does not lead to a criterion either, unless 
we know that the 1k  model is true.  If we already knew that, we would 
need no criterion. 

6 Comparing selection criteria 
In this section I will compare the performance of AIC and BIC in the 
selection of two nested models differing by one adjustable parameter in 
contexts in which the normality assumption holds.  While the normality 
condition will not hold for many examples, it is a central case in statistics 
because the Central Limit theorems show that it holds in a wide variety 
of circumstances (see Cramér 1946, chapters 32 and 33).  More 
importantly, the arguments leveled against AIC in favor of BIC are 
framed in this context.  So, my analysis will enable us to analyze those 
arguments in the next section. 

The normality assumption also determines the stochastic behavior of 
the log-likelihood of the seen data, and we can exploit this knowledge to 
obtain a criterion of model selection.  Let �log ( )kL θ  be the log-likelihood 
of �

kθ  relative to the seen data.  If �
kθ is a random variable, then 

�log ( )kL nθ  is also a random variable.  Its relationship to �( )kA θ is also 
displayed in figure 5.3: �log ( )kL nθ  is, on average, higher than �( )kA θ by a 
value of  k/n (modulo a constant, which doesn�t matter because it cancels 
out when we compare models).  So, an unbiased12 estimate of the 
predictive accuracy  

                                                 
12 An estimator of a quantity (in this case an estimator of predictive accuracy) is 

unbiased if the expected value of the estimate is equal to the quantity being 
estimated.  This sense of �bias� has nothing to do with model bias. 
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of the best fitting curve in any model is given by �log ( )kL n k nθ − .  If 
we judge the predictive accuracies of competing models by this estimate, 
then we should choose the model with the highest value of 

�log ( )kL n k nθ − .  This is the Akaike information criterion (AIC). 
  The BIC criterion (Schwarz 1978) maximizes the quantity 

�log ( ) log[ ] 2kL n k n nθ − , giving a greater weight to simplicity by a 
factor of log[ ] 2n .  This factor is quite large for large n, and has the 
effect of selecting a simpler model than AIC.  As we shall see, this an 
advantage in some cases  and a disadvantage in other cases.  There is an 
easy way of understanding why this is so.  Consider two very extreme 
selection rules:  The first I shall call the Always-Simple rule because it 
always selects the simpler model no matter what the data say.  
Philosophers will think of this rule as an extreme form a rationalism.  
The second rule goes to the opposite extreme and always selects the 
more complex model no matter what the data, which I call the Always-
Complex rule.  In the case of nested models, the Always-Complex rule 
always selects the model with the best-fitting specification and is 
therefore equivalent to a maximum likelihood (ML) rule.  It is also a rule 
that philosophers might describe as a naïve form of empiricism, since it 
gives no weight to simplicity.   BIC and AIC are between these two rules: 
BIC erring towards the Always-Simple side of the spectrum, while AIC 
is closer to the ML rule. 

Consider any two nested models that differ by one adjustable 
parameter, and assume that normality conditions apply approximately.  
Note we need not assume that the true hypothesis is in either model 
(although the normality conditions are easier to satisfy when it is).  The 
simple example in section 3 is of this type, but the results here are far 
more general.  The only circumstance that affects the expected 
performance of the rules in this context is the difference in the model 
biases between the two models.  The model bias, remember, is defined as 
the amount that the most predictively accurate member of the family is 
less predictively accurate than the true hypothesis.  Under conditions of 
normality, the difference in model bias is proportional to the squared 
distance between the most accurate members of each model.  In our easy 
example, this is proportional to 21

2( * )θ − .  Note that the Always-Simple 
rule selects the hypothesis 1

2θ =  and the ML rule selects the hypothesis 
�θ θ= , where �θ  is the maximum likelihood value of the statistic (the 

relative frequency of �heads up� in our example).  Under the normality 
assumption the predictive accuracies of these hypotheses are proportional 
to the squared distance to *θ  in parameter space.  That is,  

( ) ( )21 1
2 2. *A constθ θ= = − −  and ( ) ( )2� �. *A constθ θ θ θ= = − − . 
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Therefore, the null hypothesis 1
2

�θ =  is a better choice than the 
alternative �θ θ=  if and only if ½ is closer to *θ  than �θ  is to *θ .  
Notice that the first distance is proportional to the complex model�s 
advantage in bias, while the expected value of the second squared 
distance is just the variance of  the estimator �θ .  Therefore, the ML rule 
is more successful than the Always-Simple rule, on average, if and only 
if, the advantage in model bias outweighs the increased variance, or 
expected overfitting, that comes with complexity.  This is the 
bias/variance dilemma. 

A simple corollary to this result is that the two extreme rules, Always-
Simple and Always-Complex, enjoy the same success (on average) if the 
model bias advantage exactly balances the expected loss due to variance. 
It is remarkable that two diametrically opposed methods can be equally 
successful in some circumstances. In fact, we may expect that all rules, 
like BIC and AIC, will perform equivalently when the bias difference is 
equal to the variance difference. 

The situation in which the bias and variance differences are equal is a 
neutral point between two kinds of extremes�at one end of the 
spectrum the variance is the dominant factor, and at the other extreme, 
the bias difference is the overriding consideration.  In the first case 
simplicity is the important factor, while in the second case goodness of 
fit is the important criterion.  So, when the model bias difference is less 
than the expected difference in variance, we may expect BIC to perform 
better since it gives greater weight to simplicity.  And when the model 
bias is greater than the variance, we may expect AIC to perform better 
than BIC, though neither will do better than ML.   

These facts are confirmed by the results of computer computations 
shown in figure 5.4.  In that graph, the expected gain in predictive accu-
racy, or what amounts to the same thing, the gain in expected predictive 
accuracy, is plotted against the model bias difference between the two 
models in question.  Higher is better.  The expected performance of naïve 
empiricist method of ML is taken as a baseline, so the gain (or loss if the 
gain is negative) is relative to ML.  The performance is therefore 
computed as follows.  Imagine that a data set of size n is randomly 
generated by the true distribution in a domain of prediction. The method 
in question then selects its hypothesis.  If it is the same as the ML 
hypothesis, then the gain is zero.  If it chooses the simpler model, then 
the gain will be positive if the resulting hypothesis is predictively more 
accurate, and negative if it is less accurate, on average.  The overall 
performance of the method is calculated as its expected gain.  The 
expectation is calculated by weighting each possible case by the relative 
frequency of its occurrence as determined by the true distribution. 
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The performance of any method will depend on the difference in bias 
between the two models.  The horizontal axis is scaled according to raw 
(un-squared) distances in parameter space, so it is actually represents the 
square root of the model bias differences.13  On the far left is the special 
case in which both models have the same bias.  That is the point at which 
there is no advantage in complexity.  To the right are points for which the 
model bias is decreased in the more complex model.  For nested models, 
the bias factor will always favor the more complex model, although this 
is not always true for non-nested models. 

The rest of the context is held fixed: The models differ by one 
adjustable parameter, the number of seen data is fixed, and normality 
conditions hold.  Remember that the seen data set itself is not held fixed.  
We are interested in the expected performance averaged over all possible 
seen data sets of size n, where the expectation is determined by the true 
distribution. 

The curve labeled the �optimum rule� in figure 4 records the perfor-

                                                 
13 If it were scaled by the squared distances, then the results would look even less 

favorable to the BIC criterion. 
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Figure 5.4  At the neutral point, the advantage of bias had by the 
complex model balances its disadvantage in variance, and all 
selection rules result in roughly the same expected predictive 
accuracy.  In situations where the difference in model bias is 
smaller, methods that favor simplicity do better, like BIC, while in 
all other contexts, it is better to give less weight to simplicity, in 
which case AIC does better than BIC.  The plot looks the same for 
a very wide variety of values of n. 
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mance of the following �perfect� method of selection:  of the two hypoth-
esis, choose the one that is the most predictively accurate.  Sometimes 
the simpler model will �win�, sometimes the more complex model will 
�win�.  In the cases in which the simpler model is chosen, the policy is 
doing the opposite from the ML method.  This �policy� does better than 
ML when the model bias gain is relatively small, which reflects the fact 
that the decreased overfitting outweighs the loss in model bias.   But 
when the model bias advantage of complex models is large enough, the 
complex model is almost always doing better in spite of its greater 
tendency to overfit.  Note that the optimum rule cannot be implemented 
in practice, for it supposes that we know the predictive accuracies of the 
hypotheses in question.  Of course, we do not know this.  �Real� methods 
can only make use of things we know, like the number of adjustable 
parameters, the number of seen data, and the fit with seen data.  The 
optimum curve is shown on the graph because it marks the absolute 
upper bound in performance for any real criterion. 

BIC manages to meet that optimum for the special case (on the far left 
in Figure 4) in which both models are equally biased.   In our easy 
example, this corresponds to the case in which the null hypothesis is 
actually true ( 1

2*θ = ).  If we knew this were the case, then we would 
want to choose the null hypothesis no matter what the data are, which is 
to say that the Always-Simple rule is also optimum in this situation.  It is 
hardly surprising that both these rules do better than AIC in this situation.  

Nevertheless, this situation may be relevant to scientific research.  
Raftery (1994) argues that this situation is likely to arise in regression 
problems in which scientists consider many possible independent 
variables when few, if any, are truly relevant to the dependent variable.  
In an extreme case we can imagine that a set of 51 variables are all 
probabilistically independent.  Pick one as the depend variable and 
consider all models that take this variable to be a linear function of some 
proper subset of the remaining variables.  Since the coefficients of each 
term in the equation can be zero, all of the models contain the true 
hypothesis (in which all the coefficients are zero).  Therefore all the 
models are unbiased (in fact, they are all true).  That means that complex 
models lose by their increased tendency to overfit, and have no 
compensating gains in bias.  For instance, in comparing two nested 
models in which one adds a single independent variable, AIC will 
incorrectly add the variable 15.7% of the time no matter how many data 
we collect.  BIC will make this mistake less often, and the frequency of 
the mistake diminishes to zero as we collect more data. 

While AIC is making a mistake in this situation, the mistake is not as 
bad as it sounds.  The goal is to maximize predictive accuracy, and the 
severity of the mistake is measured by the loss in predictive accuracy.  If  
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the estimated value of the coefficient of the added variable is close to 
zero, then the loss in predictive accuracy may be very small.  Even the 
extreme case of adopting the maximum likelihood rule (ML), which adds 
all 50 variables, the loss in predictive accuracy due to overfitting is equal 
to 50/n, on average, which diminishes as n increases.14  AIC will tend to 
add about 8 variables, instead of 50, although the loss will be more than 
8/n because it will add the variables with the larger estimated 
coefficients.  The plot in Figure 4 suggests that the loss is around 28/n.   
For smaller n, this may be quite a large loss, but notice that the loss tends 
to zero as n increases, despite that fact that the proportion of wrongly 
added variables does not tend to zero.  That is why it is important to be 
clear about the goal (I will return to this point in the next section). 

In the plot in figure 5.4, n = 100.  But, surprisingly, the plots look the 
same for a wide variety of values I tested, from n = 100, and up.  Again, 
the reason that the relative performance of BIC and AIC does not change 
much is because of the fact that the relative cost of each BIC mistake 
goes up even though the frequency of BIC mistakes diminishes for BIC.  
Note that the absolute cost, in terms of predictive accuracy, decreases to 
zero for both methods as n tends to infinity. 

Before leaving the special case, it is important to emphasize that 
scientists do not know that they are in such a situation.  If they did know, 
there would be no need for any method of model selection�just pick the 
simplest model.  It is precisely because the context is unknown that 
scien-tists want to use a selection rule.  So, it would be wrong to prefer 
BIC solely on the basis of what happens in this special case.  

The raison d�être of model selection is the possibility of facing the 
situations represented further to the right on the x-axis in Figure 4.  There 
we quickly approach the neutral point at which all �real� methods 
perform approximately the same.  This point occurs when the model bias 
difference equals the variance of the true distribution (of the parameter 
estimator).  With the units we have chosen, this occurs at the point 
marked 1 n .  At points of greater difference in model bias, the fortunes 
of BIC and AIC change dramatically, and at model bias differences 
corresponding to about 3 standard deviations, BIC is paying a huge price 
for weighing simplicity so heavily. 

In the case illustrated, the competing models differ by just one adjus-
table parameter ( 1)k∆ = . In other computer computations, I have found 
that BIC has an even greater disadvantage on the right-hand side of the

                                                 
14 This is because the maximum likelihood hypothesis is, on average, a (squared) 

distance of 1/n from the optimum hypothesis, θ* (see figure 5.4). (This depends on 
an appropriate scaling of distances in parameter space.) The loss is then multiplied 
for each variable. 
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neutral point, while its advantage over AIC on the left is less.  The  near 
optimality of BIC in one case exposes us to considerable risk in other 
contexts. 

It is interesting to consider what happens when the number of seen 
data, n, increases.  I have defined model bias in a way that does not 
depend on n, so the point on the x-axis in Figure 4 that represents the 
context we are in does not change as n changes.  As n increases, the 
relative shapes of the curves do not change, but they shrink in size.  That 
is, the heights above and below the x-axis get smaller inversely 
proportionally to n, and the neutral point moves to the left.  If we 
imagine that the graph is magnified as it shrinks, so it appears the same 
size to us, then the only change is that the point on the x-axis that 
represents the current context moves to the right.  So, what happens if we 
steadily increase the number of seen data over time?  We start out at an 
initial value of n, call it n0.  Then we collect more data, and n increases.  
At the beginning, we are either to the left of the neutral point or we are 
not.  If we start at the left, then BIC will be better than AIC initially.  But 
as the data number increases, we must move through the region in which 
BIC is performing poorly.  If we do not start out to the left of the neutral 
point, then AIC is never worse than BIC.  So, no matter what happens, 
we are exposed to a case in which BIC is worse than AIC as the sample 
size increases.  In the limit as n tends to infinity, all methods 
approximate the optimal curve.  So, the risks associated with BIC appear 
at intermediate values of n.  Analyses that look only at the behavior of 
the methods for asymptotically large values of n will overlook this 
weakness of BIC at intermediate sample sizes. 

The analysis of this section has looked at the comparison of two fixed 
nested models.  These results do not extend straightforwardly to the case 
of selecting models in a hierarchy of nested models (some remarks will 
address this in the next section).  However, the special case considered 
here does substantiate my thesis that BIC pays a price for its near 
optimality in one special case. 

7 The charge that AIC is inconsistent 
It is frequently alleged that AIC is inconsistent,15 while BIC is not, 
thereby suggesting that BIC performs better in the limit of large n.  This 
allegation is repeated in many publications, and in so many con- 

                                                 
15 Philosophers unfamiliar with statistical terminology should note that this does not 

refer to logical inconsistency.  Rather, an estimator is statistically consistent if it 
converges in probability to the true value of what it is trying to estimate (the target 
value).   
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versations, that I am unable to document all of them.  I will pick on just 
one example.  Keuzenkamp and McAleer (1995, page 9) state that AIC 
�fails to give a consistent estimate of k,� which they attribute to Rissanen 
(1987, page 92) and Schwarz (1978).  Bozdogan (1987) takes the 
criticism to heart, and derives an extension of AIC that is consistent in 
this sense.  My conclusion will be that there is no sensible charge to 
answer, and so there is no need to modify AIC (at least, not for this 
reason).  An immediate corollary is that all the competing criteria are 
consistent in the relevant sense.  In any case, even if it did turn out 
unfavorably for AIC, it would be wrong to place too much emphasis on 
what happens in the long term, when scientists are only interested in 
finite data.16 

There are actually many different questions that can be asked about 
the consistency of AIC.  The first is whether AIC is a consistent method 
of maximizing predictive accuracy in the sense of converging on the 
hypothesis with the greatest predictive accuracy in the large sample limit.  
The second is whether AIC is consistent estimator of predictive accuracy, 
which is a subtlety different question from the first.  And the third is 
whether AIC converges to the smallest true model in a nested hierarchy 
of models.  The answer to the first two questions will be yes, AIC is 
consistent in this sense while the answer to the third is no, AIC is not 
consistent in this sense, but this fact does not limit its ability to achieve 
its goal.  Here are the details. 

Whatever it means to �estimate k�, it is certainly not what AIC was 
designed to estimate.  The goal defined by Akaike (1973) was to estimate 
predictive accuracy.  Because Akaike is the author of this approach, the 
charge that AIC is inconsistent might be read by many observers as 
saying that AIC is an inconsistent estimate of predictive accuracy.  I will 
begin by showing that this charge of inconsistency is false, and then 
return to the quoted charge. 

Akaike�s own criterion minimizes the quantity �2(log ( ) )kL kθ− − , 
which estimates �2 ( )knA θ− .  But note that this is a strange thing to 
estimate, since it depends on the number of seen data, n.  It is like 
estimating the sum of heights of n people drawn from a population.  The 
target value would be nµ, where µ is the mean height in the population.  
Rather, the target should be a feature of the population alone, namely µ.  
To proceed otherwise is to mix up the means to the goal, which is a 
function of n, and the goal itself (which is not a function of n).  So, the 
correct procedure is to use the sample mean, x , to estimate µ, and this is 
a consistent estimate.   
                                                 
16 See Sober (1988) for a response to the inconsistency of likelihood estimation in some 

situations, and Forster (1995, section 3) for a critique of the Bayesian idea that priors 
are harmless because they are �washed out� in the long run. 
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Now suppose we were to use n x  to estimate nµ.  Then of course the 
estimator would be inconsistent because the error of estimation grows 
with increasing n.  This is hardly surprising when the target value keeps 
growing.  The correct response to this problem would be to say, as every-
one does, that x  is a consistent estimate of µ. Surprisingly, this is 
exactly the situation with respect to AIC.  AIC, in Akaike�s formulation, 
is an inconsistent estimate because its target value grows with n. Akaike 
(1973, 1974, 1977, 1985) sets up the problem in a conceptually muddled 
way.   

The correct response to the �problem� is to divide the estimator and 
target by n, so that the target does not depend on the sample size.  This is 
exactly what I have done here, and what Forster and Sober (1994) were 
careful to do when they introduced the term �predictive accuracy� to 
represent what the AIC criterion aimed to estimate (Akaike does not use 
this term).  AIC does provide a consistent estimate of predictive accuracy 
when it is properly defined. 

Now, let us return to the earlier charge of inconsistency.  When there 
is talk of �estimating k� the discussion is typically being restricted to the 
context of a nested hierarchy of models.  Here there are two cases to 
consider.  The first is the case in which the true hypothesis appears some-
where in the hierarchy, while in the second it does not.  Let me consider 
them in turn. 

In the former case, the true hypothesis will first appear in a model of 
dimension k*, and in every model higher in the hierarchy.  When one 
talks of estimating k, one is treating the value of k determined by the 
selected model as an estimate of k*.  But why should it be desirable that 
k be as close as possible to k*?  In general it is not desirable.  For 
example, consider the hierarchy of nested polynomials and suppose that 
the true curve is a parabola (i.e., it is in PAR).  If the data is sampled 
from a relatively narrow region in which the curve is approximately 
linear (which is to say that there is not much to gain by going from LIN 
to PAR), then for even quite large values of n, it may be best to select 
LIN over PAR, and better than any other family of polynomials higher in 
the hierarchy.  Philosophically speaking, this is the interesting case in 
which a false model is better than a true model.  However, for 
sufficiently high values of n, this will change, and PAR will be the better 
choice (because the problem of overfitting is then far less).  Again, this is 
an example in which asymptotic results are potentially misleading 
because they do not extend to intermediate data sizes. 

Let us consider the case in which n is large enough to make PAR the 
best choice (again in that case in which the true curve is in PAR).  Now 
AIC will eventually overshoot PAR.  Asymptotically, AIC will not con-
verge on PAR (Bozdogan 1987; Speed and Yu, 1991).  This is the basis  
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for the quoted charge that AIC is inconsistent.  But how serious are the 
consequences of this fact?  After all, AIC does successfully converge on 
the true hypothesis!   

One might object: �But how can it converge on the true parabola if it 
doesn�t converge on PAR?�  But the objector is forgetting that the true 
curve is also in all the models higher in the hierarchy because the models 
are nested.  So, there is no need for the curve favored by AIC to be in 
PAR in order for it to converge to a member of PAR.  The fact that I am 
right about this is seen independently from the fact that the maximum 
likelihood estimates of the parameter values converge to their true 
values.  This implies that even ML converges on the true hypothesis, and 
certainly ML overshoots k* far more than AIC!  

In the second case the true hypothesis does not appear anywhere in the 
hierarchy of models.  In this case the model bias will keep decreasing as 
we move up the hierarchy, and there will never be a point at which it 
stops decreasing.  The situation is depicted in figure 5.3.  For each n, 
there will be an optimum model k0, and this value will keep increasing as 
n increases.  The situation here is complicated to analyse, but one thing is 
clear.  There is no universally valid theorem that shows that BIC does 
better than AIC.  Their relative performances will depend on the model 
biases in the hierarchy in a complicated way.  

In both cases, the optimum model moves up the hierarchy as n 
increases.  In the first case, it reaches a maximum value k*, and then 
stops.  The crucial point is that in all cases, the error of AIC (as an 
estimate of predictive accuracy) converges to zero as n tends to infinity.  
So, there is no relevant charge of inconsistency to be leveled against AIC 
in any situation.  In fact, there is no such charge to be leveled against any 
of the methods I have discussed, which is to say that asymptotic results 
do not succeed in differentiating any method from any other.  The crucial 
question concerns what happens for intermediate values of n.  
Theoreticians should focus on the harder questions, for there are no easy 
knock-down arguments against one criterion or another. 

8 Summary of results 
The analysis has raised a number of issues:  is there any universal proof 
of optimality, or more realistically, Is one criterion more optimal than 
known competitors?  Or does it depend on the circumstances? What is 
the sense of optimality involved?  I believe that the framework described 
in this chapter shows how to approach these questions, and has yielded 
some answers in special cases.  The main conclusion is that the perfor- 
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mance of model selection criteria varies dramatically from one context to 
another.  Here is a more detailed summary of these results: 
• All model selection criteria may be measured against the common 

goal of maximizing predictive accuracy. 
• Predictive accuracy is always relative to a specified domain of 

prediction, and different domains define different, and perhaps 
conflicting, goals. 

• It is commonly claimed that AIC is inconsistent.  However, all 
criteria are consistent in the sense that they converge on the optimum 
hypothesis for asymptotically large data sizes. 

• Because all methods are consistent in the relevant sense, this 
asymptotic property is irrelevant to the comparison of selection 
methods. 

• The relevant differences in the selection criteria show up for 
intermediate sized data sets, although what counts as �intermediate� 
may vary from one context to the next. 

• When the more complex model merely adds adjustable parameters 
without reducing model bias, then BIC makes a better choice than 
AIC, but no method does better than always choosing the simpler 
model in this context. 

• When a more complex model does reduce bias, but just enough to 
balance the expected loss due to overfitting, then this is a �neutral 
point� at which all methods enjoy roughly the same degree of 
success. 

• When a more complex model reduces model bias by an amount that 
exceeds the expected loss due to overfitting, then AIC does quite a 
lot better than BIC, though ML performs better than both. 

The demonstration of these results is limited to the comparison of two 
nested models under conditions of normality, and it supposes that the 
domain of prediction is the same as the sampling domain (it deals with 
interpolation rather than extrapolation�see Forster, 2000 for some 
results on extrapolation).  This leaves a number of open questions.   How 
do these results extend to hierarchies of nested models, and to non-nested 
models?  What happens when normality conditions do not apply?  What 
if the domain of prediction is different from the domain from which the 
data are sampled?  While I have few answers to these questions, I have 
attempted to describe how such an investigation may proceed. 

What are the practical consequences of these results?  In the case 
investigated here, I have plotted the relative performances of model 
selection criteria against the biases of the models under consideration.  
The problem is that the model biases are generally unknown.   

A sophisticated Bayesian might assign a prior probability distribution 
over the model biases.  For example, if the model biases along the x-axis  
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in figure 5.4 have approximately the same weight, then the expected 
performance of AIC will be better than BIC.  If such a prior were 
available, it would not only adjudicate between AIC and BIC, but it 
would also allow one to design a third criterion that is better than both.   
However, it is difficult to see how any such prior could be justified.  

If such priors are unavailable, then it seems sensible to favor AIC over 
BIC, if that were the only choice.17  After all, AIC is a better estimator of 
predictive accuracy than BIC, since BIC is a biased18 estimator of 
predictive accuracy.  When you correct for the bias in BIC you get AIC.  
BIC merely sacrifices bias with no known gain in efficiency or any other 
desirable property of estimators. 

Irrespective of any practical advice available at the present time, the 
main conclusion of this chapter is that the Akaike framework is the right 
framework to use in the investigation of practical questions. 

References 
Akaike, H. (1973). Information theory and an extension of the maximum like-

lihood principle, in B. N. Petrov and F. Csaki (eds.), 2nd International 
Symposium on Information Theory, Budapest, Akademiai Kiado, pp. 
267-81.   

(1974). A new look at the statistical model identification, IEEE Transactions 
on Automatic Control, vol. AC-19: 716-23. 

(1977). On the entropy maximization principle, in P. R. Krishniah (ed.), 
Applications of Statistics: 27-41.  Amsterdam, North-Holland. 

(1985). Prediction and Entropy, in A. C. Atkinson and S. E. Fienberg (eds.), 
A Celebration of Statistics, pp. 1-24, New York, Springer. 

Bearse, P. M., H. Bozdogan and A. Schlottman (1997). Empirical econometric 
modeling of food consumption using a new informational complexity 
approach. Journal of Applied Econometrics. October 1997. 

Bozdogan, H. (1987). Model selection and Akaike�s information criterion 
(AIC): the general theory and its analytical extensions. Psychometrika 52: 
345-370. 

(1990). On the information-based measure of covariance complexity and its 
application to the evaluation of multivariate linear models. 
Communications in Statistics�Theory and Method 19: 221-278. 

Bozdogan, H. and D. Haughton (forthcoming). Information complexity criteria 
for regression models. Computational Statistics and Data Analysis. 

Burnham, K. P. and Anderson, D. R. (1998). Model Selection and Inference: a 
Practical Information-Theoretic Approach.  New York: Springer. 

                                                 
17 Of course, they are not the only choices.  For example, Bearse et al (1997) and 

Bozdogan (1990) derive alternative criteria to AIC and BIC.  Burnham and Anderson 
(1998) provide a recent survey of variations on AIC. 

18 An estimator of a quantity, in this case an estimator of predictive accuracy, is biased 
if the expected value of the estimate is not equal to the quantity being estimated.  
This sense of �bias� has nothing to do with model bias. 



118 Malcolm R. Forster 
Cheeseman, P. (1990).  On finding the most probable model. In Jeff Shrager 

and Pat Langley, Computational Models of Scientific Discovery and 
Theory Formation, pp.73-93.  San Mateo, CA: Morgan Kaufmann Inc. 

Cramér H. (1946). Mathematical Methods of Statistics. Princeton, NJ:  
Princeton University Press. 

Earman, J. (1992).  Bayes or Bust? A Critical Examination of Bayesian 
Confirmation Theory, The MIT Press, Cambridge.  

Forster, M. R. (1994).  Non-Bayesian foundations for statistical estimation, 
prediction, and the ravens example.  Erkenntnis 40: 357 - 376. 

Forster, M. R. (1995). Bayes and bust: the problem of simplicity for a 
probabilist�s approach to confirmation. British Journal for the Philosophy 
of Science 46: 399-424. 

(1999). Model selection in science: the problem of language variance. British 
Journal for the Philosophy of Science 50: 83-102. 

(2000). Key concepts in model selection: performance and generalizability, 
Journal of Mathematical Psychology 44: 205-231. 

(2000a). Hard problems in the philosophy of science: Idealisation and 
commensurability. In R. Nola and H. Sankey (eds) After Popper, Kuhn, 
and Feyerabend.  Kluwer Academic Press, pp. 231-250. 

Forster, M. R. and E. Sober (1994).  How to tell when simpler, more unified, or 
less ad hoc theories will provide more accurate predictions. British Journal 
for the Philosophy of Science 45: 1 - 35. 

Geman, S., E. Bienenstock and R. Doursat 1992, Neural networks and the 
bias/variance dilemma.  Neural Computation 4: 1-58. 

Keuzenkamp, H. and McAleer, M. (1995). Simplicity, scientific inference and 
economic modeling. The Economic Journal 105: 1-21. 

Kiessepä, I. A. (1997). Akaike information criterion, curve-fitting, and the 
philosophical problem of simplicity.  British Journal for the Philosophy of 
Science 48: 21-48. 

Kruse, M. (1997).  Variation and the accuracy of predictions.  British Journal 
for the Philosophy of Science 48: 181-193. 

Kullback, S. and R. A. Leibler (1951). On information and sufficiency. Annals 
of Mathematical Statistics 22: 79-86. 

Linhart, H. and W. Zucchini (1986).  Model Selection.  New York: John Wiley 
& Sons.  

MacKay, D. J. C. (1995). Probable networks and plausible predictions�a 
review of practical Bayesian methods for supervised neural networks.  
Network: Computation in Neural Systems 6: 496-505. 

Popper, K. (1959).  The Logic of Scientific Discovery. London, Hutchinson. 
Raftery, A. E. (1994).  Bayesian model selection and social research. Working 

Paper no. 94-12, Center for Studies in Demography and Ecology, 
University of Washington. 

Rissanen, J. (1978). Modeling by the shortest data description. Automatica 14: 
465-471. 

(1987). Stochastic complexity and the MDL principle. Economic Reviews 6: 
85-102. 

(1989). Stochastic Complexity in Statistical Inquiry. Singapore, World 
Books. 

Rosenkrantz, R. D. (1977). Inference, Method, and Decision. Dordrecht: 
Reidel. 



 The new science of simplicity  119   

 

Sakamoto, Y., M. Ishiguro, and G. Kitagawa (1986).  Akaike Information 
Criterion Statistics.  Dordrecht, Kluwer. 

Schwarz, G. (1978). Estimating the dimension of a model.  Annals of Statistics 
6: 461-5. 

Sober, Elliott (1988).  Likelihood and convergence.  Philosophy of Science 55: 
228-37. 

Speed, T. P. and Bin Yu (1991). Model selection and prediction: normal 
regression,  Technical Report No. 207, Statistics Dept., University of 
California at Berkeley.  

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-
validation and Akaike�s criterion.  Journal of the Royal Statistical Society 
B 39: 44-47. 

Turney, P. D. (1990). The curve fitting problem�a solution. British Journal 
for the Philosophy of Science 41: 509-30. 

(1994). A theory of cross-validation error.  The Journal of Theoretical and 
Experimental Artificial Intelligence 6: 361-392. 

Young, A. S. (1987). On a Bayesian criterion for choosing predictive 
sub-models in linear regression. Metrika 34: 325-339. 

Wallace, C. S. and P. R. Freeman (1987).  Estimation and inference by 
compact coding, Journal of the Royal Statistical Society B 49: 240-265. 

Xiang, D. and G. Wahba (1996).  A generalized approximate cross validation 
for smoothing splines with non-Gaussian data. Statistica Sinica 6: 675-692. 


	Malcolm R. Forster
	The problem
	Preliminaries
	A milieu of methods and an easy example
	Predictive accuracy as a goal of model selection
	A ‘normality’ assumption and the geometry of parameter space
	Comparing selection criteria
	The charge that AIC is inconsistent
	Summary of results
	References

